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LETTER TO THE EDITOR 

Corner transfer matrix of a critical free Fermion system 
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nover 1, Federal Republic of Germany 
t Labratoire de M&Ies de Physique Mathtmatique. Universitt de "s, Pan: de 
Grandmont, F-37200 Tours. France 

Received 10 February 1992 

AbslmcL In order to diagonalize the generator of the comer transfer matrix of a critical 
free-fermion 8-venm system with magnelic field we derive an integral representation for 
the eigenvector components of the generator. At large N we numerically vefify the 
predictions of conformal invariance for critical systems. 

The predictions of conformal invariance [1,2] for critical two-dimensional systems 
have been verified so far for many geometries and configurations pertaining to both 
row-tc-row (31 as well as corner transfer matrices [4]. However it has been noticed 
that in the presence of external fields some adjustment is necessaly [5]. Here we 
study a critical free-fermion system of finite size [6] from the standpoint of its corner 
transfer matrix where we encounter a situation which differs from a case studied 
previously [7] and thus leads to some mathematical aspects which have not yet been 
treated. 

To set up the framework let us recall that instead of dealing directly with the 
corner transfer matrix itself we seek to diagonalize its generator obtained from the 
original corner transfer matrix by the so-called Hamiltonian limit (see e.g. [7]). The 
quantum operator obtained is 

N - l  

Lo = x { n ( u : u : + ,  + X U ~ U ~ + ~ )  + h(2n - 1 ) ~ : )  + h ( N  - l)u& (1) 
*=l 

where X is the so-called anisotropy parameter and h the magnetic field. Lo can be 
interpreted as the Hamiltonian of a quantum X Y  spin chain with linearly increasing 
strength of the exchange coupling along the chain in a transverse magnetic field which 
is also increasing linearly along the chain. 

Since this statistical system exhibits a critical behaviour for X = 1 (the case treated 
in [7]) it is interesting to study the other critical line [6] 

x = 2 h  - 1 .  (2) 

We follow up the standard procedure of Lieb er a1 [8] which consists in fermionizing 
Lo and diagonalizing the quadratic form in fermion operators. Basically this amounts 
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to diagonalizing two matrices (which do not commute) and the components of the 
eigenvectors { d J )  = ( G1, . . . , G N )  and { 4} = ( bl, . . . , 4 N )  have in the end to fulfil 
the recursion relations 

(n - + nXdJ,+, - h(2n - I)$,, = E+,, 

W n  - 1 ) 4 ~ . ~  + n4n+l - h(2n - l)& = E G n  

(3) 
(4) 

with the end components obeying 

In the special cases studied previously the resolution of this system has been 
facilitated enormously because one was able to identify (3) and (4) with the recursion 
relations of known polynomials such as Meixner, Gottlieb, Laguerre and Carlitz 
polynomials. The reason for this was that the recursion relations decoupled, resulting 
in tridiagonal recursions. Unfortunately in our case of (2) such an identification is no 
longer possible. 

The method employed here makes use of the generating functions 

m 

G ( t )  = t"-'@" 
n=1 

(7) 
m 

4(t) = c t n - 1 A  (8) 
n=l  

which upon substitution in (3) and (4) yield the system of first-order differential 
equations 

( t 2 +  X - 2ht)G'+ ( t  - h)G = &4 
( x t Z + 1 - 2 h t ) 4 ' + ( X t - h ) ~ = € G .  

The solutiont appears under the  form of Meixner's generating functions [9], i.e. 

N t )  = f ( t ) e x p ( 4 t , X ) )  
4(t) = g(t)exp(eu(t ,X))  

with 

f(t) = ( t Z  + X - 2ht)-'/' g ( t )  = ( A t 2  + 1 - 2ht)-'" (13) 

and taking the condition of criticality X = 2h - 1 already into account 

t The authors thank Professor Brian Davies for providing hinu leading to this solution, 



Letter to the Editor L537 

Here +( t )  and 4 ( t )  do not generate the usual Meixner polynomials [lo] because Of 
the complexity of (14). In fact for 0 < X < 1 u(1, A )  has the following expression 

for t -< X and 

u ( t ,  A)  = L( 1 - X  (; - c0s-l S) 
- i (cosh-' $""- ( 1  + - 1) cosh-' G)} (16) 

for t > A. As X -+ 1 u ( t ,  A )  -+ u ( t ,  1) = i/( 1 - 1) consistent with [7], where we 
recover the Laguerre polynomials. As for X i 0 one should take the second form 
of u( t ,X ) .  Then it agrees with the limiting case (A = 0, h = 1/2)  of a special 
triangular Ising model 1111. 

Each set of polynomials { + , , ( E ) )  and { + n ( ~ ) )  obeys a pentadiagonal recursion 

orthogonal as Favard's theorem [lo] states. In fact the special Melxner structure of 
the generating function does not automatically imply orthogonality as exemplified by 
a case in [12]. The issue of orthogonality must therefore be settled separately. In any 
case one may always use Cauchy's theorem to obtain integral representations for the 
polynomials. For example $,,(E) takes the form 

re!sticfl, if e!imiflates nnnrnnri.tPl" in (s)-(q, they y Eeresszri!" -rr.-r.--J 

A more practical representation may be obtained with the following parametriza- 
tion 

1 - X  2 E  
z=-  U z=- 1 t i 6  

d i n  2 1 - X  
exp( ia j2 )  = 

and choosing as contour in the z-plane a vertical strip limited by z = a / 2  on the 
right and z = (a - n ) / 2  on the left, so that the mapping from t to z, given by (U),  
surrounds only the pole at the origin, i.e. 

? = t a n z t a n ( = - z ) .  (18) 

With this parametrization +,, (x) may be written in terms of Fourier integrals 

[cos o( + cosh 2s]"-' cosh s 
{ea'/' 1: ds eiZ* [cosh2s - cosa]"  

2 
n m  

&(x) = 
;Tfl [cosh 2s  - cos a]"-' 

sinh s) . . ,n--r,*l? rm  dse...~ --le\- . . , - I -  J- m [cosh 2 s  + cos a]" 

As n - 00, the second integral in (20) is vanishingly small and the asymptotic 
behaviour of ~,,(s) is essentially given by the first Fourier integral. The zeros of the 
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Plgure 1. The spacing Ac between lhe lwo lowest lying eigenvalues of Lo for X = 1 
and h = f as a function of 11 In N (lines are guides t o  the eye only). 
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Figure 2. The spacing Ac klween the two lowest lying eigenvalues of LO for X = 0 
and h = as a function of 1 f In N (lines arc guides to  the eye only). 

asymptotic expression of +!J,,(z) determine the eigenvalues of the quantum operator 
Lo for a large but finite system. We shall study this issue in detail later [I31 and 
restrict ourselves for the moment to numerical results which confirm the critical 
behaviour expected for the corner transfer matrix of critical systems [2]. 

Note that a similar representation for +"(z) can be obtained if the factors cosh s 
and -i sinh s are exchanged in (20). 

We diagonalized the system (3)-(6) numerically for several values of the anisotropy 
parameter X and the magnetic field h for system sizes N = 2'" with m = 3,. . . ,13 .  
Conformal invariance predicts [ ] for the  low-lying eigenvalues of Lo that the levels 
are equidistantly spaced with the level spacing A E  vanishing logarithmically as the 
system becomes large 

25r A € =  - In N' 
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This behaviour, as is well known, may be modified by an amplitude which is pro- 
portional to the Fermi velocity and therefore depends on applied external fields, in 
our case the magnetic field h. This effect has already been discussed for the corner 
transfer matrix [7]. In order to observe the behaviour (21) numerically one bas tO 
treat sufficiently large chains, as we did, or to  modify the chains by cutting off some 
sites at the left end of the chains [14]. We have plotted the spacing between the two 
lowest lying eigenvalues for two sets of values ( h ,  A )  on the critical line (2), see the 
figures. Of course only the analytical treatment via the asymptotic evaluation of (20) 
can prove the correct h-dependence of the prefactor which modifies (21). From the 
numerical curves, however, we have evidence that the dependence is the same as in 
the case of X = 1 and h < 1 [7]. 

'Ib conclude we have confirmed the predictions of conformal invariance for the 
corner transfer matrix on the critical line X = 2h - 1 numerically and demonstrated 
that an analytical treatment through the use of polynomials and their asymptotic 
evaluation should be feasible, but is more involved because of the pentadiagonal 
structure of the recursion relations in this case. 

One of the authors (H-PE) would like to express his gratitude to the Laboratoire 
de Mod2les de Physique Mathkmatique of the Universitt? de 'Iburs for the hospitality 
extended to him during the initial stage of this work. Financial support by the 
Hannoversche Hochschulgemeinschaft is also gratefully acknowledged. 
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